PERKIN-ELMER 3210

This 3210 system was donated on June 4, 2001 by BMI.

This system were manufacturerd by Perkin-Elmer of Norwalk, Connecticut and was commonly used for scientific and laboratory work. Perkin-Elmer originated in the early 1930s when a common fascination with astronomy brought together an otherwise unlikely duo: Charles W. Elmer, the head of a firm of court reporters who was already not far from retirement age, and Richard Perkin, a young investment banker who had left Pratt Institute in Brooklyn, New York, after a year of studying chemical engineering to try a Wall Street career.

The two met when Perkin dropped in on an astronomy lecture Elmer delivered at the Brooklyn Institute of Arts & Sciences. They soon became friends and also recognized a common interest in turning their hobby into a business opportunity in precision optics. Deciding to set up shop in New York City, Perkin raised $15,000 in start up capital from his relatives, while Elmer was able to contribute in $5,000. They ordered equipment from Europe, and on April 19, 1937 they formed Perkin-Elmer as a partnership.

Perkin and Elmer started their optical design and consulting business in a small Manhattan office, but within a year they were producing optical components in Jersey City, New Jersey. On December 13, 1939 they incorporated. The company moved to Connecticut's Fairfield County in 1941--initially to Glenbrook outside Stamford, later to Norwalk and Wilton--its home area ever since.

The onset of World War II made clear the importance of an American source for precision instruments, and Perkin-Elmer was able to operate at a profit from the start. In 1942, it became the first optical instrument maker to win a Navy "E" (for Excellence). The principal wartime products were instruments and components used in airplane range finders, bombsights, and reconnaissance systems. However, the company was also able to arrange for research that extended its optical know-how into a brand new field, coming out with its initial infrared spectrometer in 1944. Germany had also done work in infrared spectroscopy, but had put it aside to concentrate on more urgent military needs, enabling Perkin-Elmer to build a substantial lead. The production of a spectrometer, which uses infrared rays for quick and accurate analysis of chemical compounds, was the start of a whole array of analytical instruments such as gas chromatographs (which Perkin-Elmer introduced in 1955 as its second major analytical group) and atomic absorption spectrophotometers, collectively ushering in a new era in analytical laboratory operations. The equipment is used both for research and for production control, as well as several other activities including crime investigations.

After the war the company was chosen to design and build the 33-inch Baker Schmidt telescope, which Harvard University installed in 1950 at an observatory in South Africa. As part of its defense work, in 1955, it built a Transverse Panoramic Camera, the 12 by 14 foot frames of which could take precise horizon-to-horizon aerial reconnaissance pictures from 40,000 feet, a major achievement in those presatellite days. And from the early, unmanned satellite launchings on, Perkin-Elmer instruments were used regularly in spacecraft. Furthermore, the company remained a leading supplier of missile guidance equipment to the military.

During the 1950s Perkin-Elmer also moved energetically into foreign markets. It set up a manufacturing affiliate in West Germany in 1954 and in Britain in 1957, while sales units were established in several more countries. In 1960 a Japanese production unit, Hitachi Perkin-Elmer, was established, with Hitachi Ltd. holding a 51 percent interest.

Cofounder Elmer died at age 83 in 1954. A year later the company sold its first stock to the public and began trading over the counter. On December 13, 1960--21 years to the day since Perkin-Elmer incorporated--Dick Perkin bought the first 100 shares for $47.50 a share at the traditional New York Stock Exchange ceremonies as Perkin-Elmer was listed with the ticker symbol PKN. Since that time, Perkin-Elmer's stock has undergone four 2-for-1 stock splits. While PKN tends to be quite a volatile stock, prices have generally been well above that early level.

Perkin served as president and chairperson until June 1961, when he brought in Robert E. Lewis, who had been president of Argus Camera and Sylvania Electric, to take over as president and chief executive. Perkin remained chairperson, concentrating on long range plans and overseas development, until his death at age 62 in 1969.

Perkin-Elmer came early to the laser era in 1961. In fact, the whole concept was so new that the unit handling the deve